
Context Free Grammar

A Context Free Grammar(CFG) is a set of rewriting rules that produce patterns of
strings.

We will explain this concept via a canonical example which is the language L = {0n1n|n ≥
0}. As an aside, it is useful to remember that this a language that is not regular (see regular
pumping lemma).

Load the file CFGModuleExample1.jflap into JFLAP8 to follow along.

1 Mathematical definition

A Context Free Grammar is described by a 4 tuple (V, T, P, S) where V is the set of variables.
T is the set of terminals. P is the set of what are called productions and S is the start symbol
of the grammar.

A production is basically a substitution rule. It consists of a symbol and a string separated
by an arrow. The symbol is called a variable. The string on the right side of the arrow
consists of some variables and some other symbols that are called terminals. A terminal is
not allowed to be on the left side of an arrow for any of the rules. The terminals in Context
Free Grammar are analogous to the input alphabet in automata.

One variable is called the start variable. Generally, that variable is denoted by S and
generally while listing the production rules, a rule with that variable on the left side is listed
first.

In the example, you will see the top line has a production rule S → 0S0. S is a variable.
0 and 1 are supposed to be terminals. Note how 0 and 1 never appear on the left side of the
rules.

So in our example V = {S}, T = {0, 1} and the start symbol is S.
This is clearly indicated in JFLAP as well.

1

2 How a context free grammar produces strings

As mentioned before, a production rule is basically a substitution rule. The variable on the
left side can be substituted with the string that is found on the right side.

To produce a string, you always begin with the start symbol and then follow production
rules.

In our example, if we use rule 2, it is easy to see how this grammar produces the string
ε.

For a more interesting string, let us use the other rule. Again, we begin with S. S gets
replaced with 0S1 by using the first rule. If we apply this same rule 3 times we get the string
000S111. Now to stop this production process, we will use S → ε to end up with the string
000111.

The notation used for this production is S ⇒ 0S1⇒ 00S11⇒ 000S111⇒ 000111
By trying out a few more examples of such substitutions, it should be clear that this CFG

produces string of the form - a certain number of 0s followed by same number of 1s, which

2

is exactly what the language L1. We say, the context free grammar generates the language
L1.

3 Using JFLAP to generate strings

JFLAP allows you to step through the process of using the production rules to generate
strings.

Load up the example, CFGModuleExample1.jflap. Click input and then Brute force
parse.

Let us try 2 strings, first 0011 and then 00111. Enter the input and click set. Now
clicking the step button will make JFLAP step through the rules and see if the provided
input string can be generated. With a single step, we can get ε and 0S1 as shown here

Click on step again and see that we get 00S11 as a result of using the rules S → 0S1

3

Finally clicking step once more gives us the string 0011 by using the rules S → ε.

4

5

On the other hand if we try a string like 00111 we find at some point the current deriva-
tions give you the empty collection [], meaning that the input string cannot possibly be
derived.

4 Extension to the previous example

Now that the basic idea of a context free grammar has been described, let us try an extension
of the previous example

L2 = {0n1n|n ≥ 0} ∪ {1n0n|n ≥ 0}
In the previous example we saw how to make a grammar that would give us strings where

the 0s are before 1s. The same idea can be used to get strings that have the 1s before the
0s. The only thing remaining is how do we connect them up?. For this, recognize that there
is a decision to be made in the beginning of either going down the 0s before the 1s or the 1s
before the 0s.

So the start variable will have a substitution rule S → A and S → B. The A will
be responsible for then generating strings of the form 0n1n. The B will be responsible for

6

generating strings of the form 1n0n.
Try and complete the rules yourself and then enter them into JFLAP.
The complete solution is provided in CFGModuleExample2.jflap.
To convince yourself that this solution actually works, try using the brute force parse to

see whether or not the following string are accepted {0011, 1100, 10, 101, 010011}.

5 Relationship to regular languages

Every regular language can be generated by a CFG. Make a non-terminal for every state and
then any transition in a DFA from a state p to state q on a character a can be represented
by the transition p→ aq. And for every final state f add the rule f → ε.

6 Questions to think about

1. What happens if you accidentally forget the rule S → B in the second example

2. Does this grammar generate all strings of the form

L = {strings that have the same number of 0s and 1s}
Try making a CFG that generates that language.

3. Given two context free grammars generating languages L1 and L2, can you always
make a context free grammar that generates the union of the two languages.

4. Is there a CFG for the language ambn where m 6= n.

7 Answers

1. If you forget S → B, there is no way to generate the strings that begin with a block of
1s followed by 0s. In this case, the rules that have the variable B on the left side are
essentially unusable (unreachable).

2. The solution is provided in the file CFGModuleExample3.jff

3. To create a CFG that generates the union of the two languages, create a new start
symbol S, and add two rules S → A and S → B assuming that A and B are the start
symbols of the two languages.

Context Free Grammars are closed under the union operation.

7

	Mathematical definition
	How a context free grammar produces strings
	Using JFLAP to generate strings
	Extension to the previous example
	Relationship to regular languages
	Questions to think about
	Answers

